

Development of an object-oriented building physics library and investigation and optimization of hygrothermal and hygienic comfort in rooms

Thierry Stephane Nouidui

Simulation Research Group
Building Technologies Department
Environmental Energy Technologies
Lawrence Berkeley National Laboratory

Motivation

Motivation

WALL MODEL

BUILDING MODEL

Equation-Based Object-Oriented
Hygrothermal Building Physics Library
(MODELICA)

Overview

- Motivation
- Objectives
- > Equation-Based Object-Oriented Building Physics Library
- Validation of the Building Physics Library
- > Application
- Summary and Outlook

Approach

Overview

- Motivation
- Objectives
- > Equation-Based Object-Oriented Building Physics Library
- Validation of the Building Physics Library
- > Application
- Summary and Outlook

Equation-Based Object-Oriented Building Physics Library

Behaviour of a real building

Database

Interfaces

Enclosure models (opaque, transparent)

Airvolume models

Plant models

Environment model

Overview

- Motivation
- Objectives
- Equation-Based Object-oriented Building Physics Library
- Validation of the Building Physics Library
- > Application
- Summary and Outlook

1D - Wall model

Physical model/ Heat-Moisture

Validation of the 1D - Wall model

1. Analytical solution

- o Heat transfer
- o Diffusion

2. WUFI (Waerme Und Feuchte Instationaer)

3. HAMSTAD

- o Benchmark 1
- o Benchmark 3

Validation of the 1D - Wall model

- 1. Analytical Solution
- 2. WUFI (Waerme Und Feuchte Instationaer)

3. HAMSTAD

Objectives

HAMSTAD work was undertaken as part of EU-initiated project for standardization of HAM (Heat-Air-Moisture) calculation methods.

It was suggested that the benchmarks be used as references in the assessment of existing and new software packages

Validation of the 1D - Wall model

3. HAMSTAD

o Benchmark 1

Boundary Conditions:

Climate: transient

Simulation time: 1 year

Simulation result: Mean water content in layer A

Validation of the 1D - Wall model

3. HAMSTAD

Benchmark 1 / Simulation results

Validation of the room model

Validation of the room model

- 1. Residential Building
 - o Reaction to the outside climate (Free floating room)
 - o Reaction to a moisture source
- 2. Office Building

Validation of the room model

Free floating Room

Boundary conditions:

- $n = 0.65 h^{-1}$
- No solar radiation
- No heat sources
- Period: 15. 25.11.2006

Results:

- Air temperature in the middle of the room
- Air humidity in the middle of the room

Validation of the room model

Free floating Room

Overview

- Motivation
- Objectives
- Equation-Based Object-oriented Building Physics Library
- Validation of the Building Physics Library
- > Application
- Summary and Outlook

Residential room

1. Consequences of Building Retrofit:

- Hygienic comfort (Mold growth, air quality)
- Hygrothermal comfort (comfort)

2. Ventilation strategies

- Cross ventilation
- Constant ventilation
- Controlled ventilation

Residential room

Different configurations

- Config. 1: old building with leaky windows (n = 0.7 h⁻¹, U_w = 1.5 W/m²K, U_f = 2.6 W/m²K)
- Config. 2: old building with tight windows (n = 0.1 h⁻¹, $U_w = 1.5 \text{ W/m}^2\text{K}$, $U_f = 1.1 \text{ W/m}^2\text{K}$)
- Config. 3: insulated old building with tight windows (n = 0.1 h⁻¹, U_w = 0.4 W/m²K, U_f = 1.1 W/m²K)

Residential room

- Cross ventilation
- Constant ventilation
- Controlled ventilation

Residential room (criteria)

Residential room (controlled ventilation system)

Simulation results: Config.1: Old building with leaky windows – Comfort

Simulation results: Config. 1: old building with leaky windows-

Config. 2: old building with tight windows

Simulation results: Config. 1: old building with leaky windows—Config. 2: old building with tight windows

Conclusions:

- Controlled ventilation system is optimal (after the retrofit)
- Cross ventilation could be an alternative but...

Summary and outlook

Summary

- > Development of an Equation-Based Object-Oriented Building Physics Library
- ➤ Validation of the Building Physics Library
- > Application: Analysis of the consequences of a ,,wrong" Building retrofit

Outlook

- Extend the Building Physics Library
- Simulator coupling (BCVTB)

Development of an object-oriented building physics library and investigation and optimization of hygrothermal and hygienic comfort in rooms

Thierry Stephane Nouidui

Simulation Research Group
Building Technologies Department
Environmental Energy Technologies
Lawrence Berkeley National Laboratory

